机器学习分类器比较

本示例旨在展示不同分类器决策边界上的特性。需要注意的是,这些示例所传达的直觉并不一定适用于真实数据集。特别是在高维空间中,数据更容易线性分离,分类器如朴素贝叶斯和线性SVM的简单性可能会比其他分类器带来更好的泛化性能。

图表显示了实心颜色的训练点和半透明的测试点。右下角显示了测试集上的分类准确度。

导入必要的库

import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import ListedColormap from sklearn.datasets import make_circles, make_classification, make_moons from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.inspection import DecisionBoundaryDisplay from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier

定义了分类器的名称和实例,以及用于生成数据集的函数。然后,生成了两个特征、无冗余特征、两个信息特征的数据集,并对其进行了一些随机扰动。

数据集和分类器的准备

names = [ "Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes", "QDA", ] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025, random_state=42), SVC(gamma=2, C=1, random_state=42), GaussianProcessClassifier(1.0 * RBF(1.0), random_state=42), DecisionTreeClassifier(max_depth=5, random_state=42), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1, random_state=42), MLPClassifier(alpha=1, max_iter=1000, random_state=42), AdaBoostClassifier(random_state=42), GaussianNB(), QuadraticDiscriminantAnalysis(), ] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [ make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable, ]

创建了一个图形界面,用于展示数据集和分类器的决策边界。对于每个数据集,都会绘制输入数据,然后对每个分类器进行训练和测试,并展示其决策边界和分类准确度。

figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds_cnt, ds in enumerate(datasets): X, y = ds X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.4, random_state=42 ) x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5 y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5 # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(["#FF0000", "#0000FF"]) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) if ds_cnt == 0: ax.set_title("Input data") # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k") # Plot the testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k") ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf = make_pipeline(StandardScaler(), clf) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) DecisionBoundaryDisplay.from_estimator( clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5 ) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k") # Plot the testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, edgecolors="k", alpha=0.6) ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(()) ax.set_yticks(()) if ds_cnt == 0: ax.set_title(name) ax.text(x_max - 0.3, y_min + 0.3, ("%.2f" % score).lstrip("0"), size=15, horizontalalignment="right") i += 1 plt.tight_layout() plt.show()

脚本的总运行时间为:(0分钟 2.491秒)。

沪ICP备2024098111号-1
上海秋旦网络科技中心:上海市奉贤区金大公路8218号1幢 联系电话:17898875485