物种地理分布建模

在保护生物学中,模拟物种的地理分布是一个重要的问题。本文以南美两种哺乳动物为例,基于过去的观察和14个环境变量来建模它们的地理分布。由于只有成功观察的案例(没有失败的观察),将这个问题视为一个密度估计问题,并使用OneClassSVM作为建模工具。数据集由Phillips等人(2006年)提供。如果可用,示例将使用basemap来绘制南美洲的海岸线和国界。

两种物种的介绍

本文研究的两种物种是:

  • Bradypus variegatus,即棕喉树懒。
  • Microryzomys minutus,也称为森林小稻鼠,是一种生活在秘鲁、哥伦比亚、厄瓜多尔和委内瑞拉的啮齿动物。

建模过程

首先,使用OneClassSVM模型来拟合Bradypus variegatus的分布。模型训练完成后,绘制了南美洲的海岸线,并预测了物种的分布。ROC曲线下面积为0.868443,表明模型具有较好的区分能力。

接下来,对Microryzomys minutus进行了同样的建模过程。模型训练完成后,同样绘制了海岸线并预测了物种分布。ROC曲线下面积为0.993919,显示出极高的区分能力。

以下是使用Python和scikit-learn库实现上述建模过程的代码示例。代码中包含了数据加载、模型训练、预测分布以及绘制ROC曲线等步骤。

from time import time import matplotlib.pyplot as plt import numpy as np from sklearn import metrics, svm from sklearn.datasets import fetch_species_distributions from sklearn.utils import Bunch try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False def construct_grids(batch): # 构建地图网格 xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) xgrid = np.arange(xmin, xmax, batch.grid_size) ygrid = np.arange(ymin, ymax, batch.grid_size) return xgrid, ygrid def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): # 创建包含特定生物信息的bunch bunch = Bunch(name=" ".join(species_name.split("_")[:2])) species_name = species_name.encode("ascii") points = dict(test=test, train=train) for label, pts in points.items(): pts = pts[pts["species"] == species_name] bunch["pts_%s" % label] = pts ix = np.searchsorted(xgrid, pts["dd long"]) iy = np.searchsorted(ygrid, pts["dd lat"]) bunch["cov_%s" % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): # 绘制物种分布图 t0 = time() data = fetch_species_distributions() xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid, ygrid[::-1]) BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000), ].T land_reference = data.coverages[6] for i, species in enumerate([BV_bunch, MM_bunch]): print("-" * 80) print("Modeling distribution of species '%s'" % species.name) mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) plt.subplot(1, 2, i + 1) if basemap: m = Basemap(projection="cyl", llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution="c") m.drawcoastlines() m.drawcountries() else: plt.contour(X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print("- predict species distribution") Z = np.ones((data.Ny, data.Nx), dtype=np.float64) idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std) Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format="%.2f") plt.scatter(species.pts_train["dd long"], species.pts_train["dd lat"], s=2**2, c="black", marker="^", label="train") plt.scatter(species.pts_test["dd long"], species.pts_test["dd lat"], s=2**2, c="black", marker="x", label="test") plt.legend() plt.title(species.name) plt.axis("equal") pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std) scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC:%.3f" % roc_auc, ha="right") print("\nArea under the ROC curve: %f" % roc_auc) print("\ntime elapsed: %.2f s" % (time() - t0)) plot_species_distribution() plt.show()
沪ICP备2024098111号-1
上海秋旦网络科技中心:上海市奉贤区金大公路8218号1幢 联系电话:17898875485